Добавить в закладки Для замечаний |
Свойства | Кальций
КальцийКальций (Calcium), Ca, химический элемент II группы периодической системы Менделеева, атомный номер 20, атомная масса 40,08; серебряно-белый легкий металл. Природный элемент представляет смесь шести стабильных изотопов: 40Ca, 42Ca, 43Ca, 44Ca, 46Ca и 48Ca, из которых наиболее распространен 40Ca (96, 97%). Соединения Ca - известняк, мрамор, гипс (а также известь - продукт обжига известняка) уже в глубокой древности применялись в строительном деле. Вплоть до конца 18 века химики считали известь простым телом. В 1789 году А. Лавуазье предположил, что известь, магнезия, барит, глинозем и кремнезем - вещества сложные. В 1808 году Г. Дэви, подвергая электролизу с ртутным катодом смесь влажной гашеной извести с оксидом ртути, приготовил амальгаму Ca, а отогнав из нее ртуть, получил металл, названный "Кальций" (от лат. calx, род. падеж calcis - известь). Распространение Кальция в природе. По распространенности в земной коре Ca занимает 5-е место (после О, Si, Al и Fe); содержание 2,96% по массе. Он энергично мигрирует и накапливается в различных геохимических системах, образуя 385 минералов (4-е место по числу минералов). В мантии Земли Ca мало и, вероятно, еще меньше в земном ядре (в железных метеоритах 0,02%). Ca преобладает в нижней части земной коры, накапливаясь в основные породах; большая часть Ca заключена в полевом шпате - анортите Ca[Al2Si2O8]; содержание в основных породах 6,72%, в кислых (граниты и другие) 1,58% . В биосфере происходит исключительно резкая дифференциация Ca, связанная главным образом с "карбонатным равновесием": при взаимодействии углекислого газа с карбонатом СаСО3 образуется растворимый бикарбонат Ca(HCO3)2: CaCO3 + H2O + CO2 = Ca(HCO3)2 = Са2++ 2HCO3-. Эта реакция обратима и является основой перераспределения Ca. При высоком содержании CO2 в водах Ca находится в растворе, а при низком содержании CO2 в осадок выпадает минерал кальцит CaCO3, образуя мощные залежи известняка, мела, мрамора. Огромную роль в истории Ca играет и биогенная миграция. В живом веществе из элементов-металлов Ca - главный. Известны организмы, которые содержат более 10% Ca (больше углерода), строящие свой скелет из соединений Ca, главным образом из СаСО3 (известковые водоросли, многие моллюски, иглокожие, кораллы, корненожки и т. д.). С захоронением скелетов мор. животных и растений связано накопление колоссальных масс водорослевых, коралловых и прочих известняков, которые, погружаясь в земные глубины и минерализуясь, превращаются в различные виды мрамора. Огромные территории с влажным климатом (лесные зоны, тундра) характеризуются дефицитом Ca - здесь он легко выщелачивается из почв. С этим связано низкое плодородие почв, низкая продуктивность домашних животных, их малые размеры, нередко болезни скелета. Поэтому большое значение имеет известкование почв, подкормка домашних животных и птиц и т. д. Напротив, в сухом климате СаСО3 труднорастворим, поэтому ландшафты степей и пустынь богаты Ca. В солончаках и соленых озерах часто накапливается гипс CaSO4·2H2O. Реки приносят в океан много Ca, но он не задерживается в океанической воде (среднее содержание 0,04%), а концентрируется в скелетах организмов и после их гибели осаждается на дно преимущественно в форме CaCO3. Известковые илы широко распространены на дне всех океанов на глубинах не более 4000 м (на больших глубинах происходит растворение СаСО3, организмы там нередко испытывают дефицит Ca). Важную роль в миграции Ca играют подземные воды. В известняковых массивах они местами энергично выщелачивают CaCO3, с чем связано развитие карста, образование пещер, сталактитов и сталагмитов. Помимо кальцита, в морях прошлых геологических эпох было широко распространено отложение фосфатов Ca (например, месторождения фосфоритов Каратау в Казахстане), доломита CaCO3·MgCO3, а в лагунах при испарении - гипса. В ходе геологической истории росло биогенное карбонатообразование, а химическое осаждение кальцита уменьшалось. В докембрийских морях (свыше 600 млн. лет назад) не было животных с известковым скелетом; они приобрели широкое распространение начиная с кембрия (кораллы, губки и т. д.). Это связывают с высоким содержанием CO2 в атмосфере докембрия. Физические свойства Кальция. Кристаллическая решетка α-формы Ca (устойчивой при обычной температуре) гранецентрированная кубическая, а = 5,56Å. Атомный радиус 1,97Å, ионный радиус Ca2+, 1,04Å. Плотность 1,54 г/см3(20 °C). Выше 464 °C устойчива гексагональная β-форма. tпл 851 °C, tкип 1482 °C; температурный коэффициент линейного расширения 22·10-6 (0-300 °C); теплопроводность при 20 °C 125,6 Вт/(м·К) или 0,3 кал/(см·сек·°C); удельная теплоемкость (0-100 °C) 623,9 дж/(кг·К) или 0,149 кал/(г·°C); удельное электросопротивление при 20 °C 4,6·10-8 ом·м или 4,6·10-6ом·см; температурный коэффициент электросопротивления 4,57·10-3 (20 °C). Модуль упругости 26 Гн/м2 (2600 кгс/мм2); предел прочности при растяжении 60 Мн/м2 (6 кгс/мм2); предел упругости 4 Мн/м2 (0,4 кгс/мм2), предел текучести 38 Мн/м2 (3,8 кгс/мм2); относительное удлинение 50%; твердость по Бринеллю 200-300 Мн/м2 (20-30 кгс/мм2). Кальций достаточно высокой чистоты пластичен, хорошо прессуется, прокатывается и поддается обработке резанием. Химические свойства Кальция. Конфигурация внешней электронной оболочки атома Ca 4s2, в соответствии с чем Ca в соединениях 2-валентен. Химически Ca очень активен. При обычной температуре Ca легко взаимодействует с кислородом и влагой воздуха, поэтому его хранят в герметически закрытых сосудах или под минеральным маслом. При нагревании на воздухе или в кислороде воспламеняется, давая основной оксид CaO. Известны также пероксиды Ca - CaO2 и CaO4. С холодной водой Ca взаимодействует сначала быстро, затем реакция замедляется вследствие образования пленки Ca(OH)2. Ca энергично взаимодействует с горячей водой и кислотами, выделяя H2 (кроме концентрированной HNO3). С фтором реагирует на холоду, а с хлором и бромом - выше 400 °C, давая соответственно CaF2, CaCl2 и CaBr2. Эти галогениды в расплавленном состоянии образуют с Ca так называемых субсоединения - CaF, CaCl, в которых Ca формально одновалентен. При нагревании Ca с серой получается сульфид кальция CaS, последний присоединяет серу, образуя полисульфиды (CaS2, CaS4 и другие). Взаимодействуя с сухим водородом при 300-400 °C, Ca образует гидрид CaH2 - ионное соединение, в котором водород является анионом. При 500 °C Ca и азот дают нитрид Ca3N2; взаимодействие Ca с аммиаком на холоду приводит к комплексному аммиакату Ca [NH3]6. При нагревании без доступа воздуха с графитом, кремнием или фосфором Ca дает соответственно карбид кальция CaC2, силициды Ca2Si, CaSi, CaSi2 и фосфид Ca3P2. Ca образует интерметаллические соединения с Al, Ag, Au, Cu, Li, Mg, Pb, Sn и другие. Получение Кальция. В промышленности Ca получают двумя способами: 1) нагреванием брикетированной смеси CaO и порошка Al при 1200 °C в вакууме 0,01-0,02 мм рт. ст.; выделяющиеся по реакции: 6CaO + 2 Al = 3CaO·Al2O3 + 3Ca пары Ca конденсируются на холодной поверхности; 2) электролизом расплава CaCl2 и KCl с жидким медно-кальциевым катодом приготовляют сплав Cu - Ca (65% Ca), из которого Ca отгоняют при температуре 950-1000 °C в вакууме 0,1-0,001 мм рт. ст. Применение Кальция. В виде чистого металла Ca применяют как восстановитель U, Th, Cr, V, Zr, Cs, Rb и некоторых редкоземельных металлов из их соединений. Его используют также для раскисления сталей, бронз и других сплавов, для удаления серы из нефтепродуктов, для обезвоживания органических жидкостей, для очистки аргона от примеси азота и в качестве поглотителя газов в электровакуумных приборах. Большое применение в технике получили антифрикционные материалы системы Pb-Na-Ca, а также сплавы Pb-Ca, служащие для изготовления оболочки электрич. кабелей. Сплав Ca-Si-Ca (силикокальций) применяется как раскислитель и дегазатор в производстве качественных сталей. Кальций в организме. Ca - один из биогенных элементов, необходимых для нормального протекания жизненных процессов. Он присутствует во всех тканях и жидкостях животных и растений. Лишь редкие организмы могут развиваться в среде, лишенной Ca. У некоторых организмов содержание Ca достигает 38%; у человека - 1,4-2%. Клетки растительных и животных организмов нуждаются в строго определенных соотношениях ионов Ca2+, Na+ и K+ во внеклеточных средах. Растения получают Ca из почвы. По их отношению к Ca растения делят на кальцефилов и кальцефобов. Животные получают Ca с пищей и водой. Ca необходим для образования ряда клеточных структур, поддержания нормальной проницаемости наружных клеточных мембран, для оплодотворения яйцеклеток рыб и других животных, активации ряда ферментов. Ионы Ca2+ передают возбуждение на мышечное волокно, вызывая его сокращение, увеличивают силу сердечных сокращений, повышают фагоцитарную функцию лейкоцитов, активируют систему защитных белков крови, участвуют в ее свертывании. В клетках почти весь Ca находится в виде соединений с белками, нуклеиновыми кислотами, фосфолипидами, в комплексах с неорганических фосфатами и органических кислотами. В плазме крови человека и высших животных только 20-40% Ca может быть связано с белками. У животных, обладающих скелетом, до 97-99% всего Ca используется в качестве строительного материала: у беспозвоночных в основном в виде CaCO3 (раковины моллюсков, кораллы), у позвоночных - в виде фосфатов. Многие беспозвоночные запасают Ca перед линькой для построения нового скелета или для обеспечения жизненных функций в неблагоприятных условиях. Содержание Ca в крови человека и высших животных регулируется гормонами паращитовидных и щитовидной желез. Важнейшую роль в этих процессах играет витамин D. Всасывание Ca происходит в переднем отделе тонкого кишечника. Усвоение Ca ухудшается при снижении кислотности в кишечнике и зависит от соотношения Ca, P и жира в пище. Оптимальные соотношения Са / Р в коровьем молоке около 1,3 (в картофеле 0,15, в бобах 0,13, в мясе 0,016). При избытке в пище P или щавелевой кислоты всасывание Ca ухудшается. Желчные кислоты ускоряют его всасывание. Оптимальные соотношения Са / жир в пище человека 0,04-0,08 г Ca на 1 г жира. Выделение Ca происходит главным образом через кишечник. Млекопитающие в период лактации теряют много Ca с молоком. При нарушениях фосфорно-кальциевого обмена у молодых животных и детей развивается рахит, у взрослых животных - изменение состава и строения скелета (остеомаляция). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||