Добавить в закладки   •   Для замечаний

Справочник
химика

АБВГ
ДЕЖЗ
ИКЛМ
НОПР
СТУФ
ХЦЧШ
ЩЭЮЯ

Свойства
химических
элементов

Свойства
драгоценных
минералов

Великие
химики


 
 

Бор

5B
 
Бор
Boron
(He)2s22p1
Атомный номер5
Атомная масса10,811
Плотность, кг/м³2340
Температура плавления, °С2030
Температура кипения, °С3860
Теплоемкость, кДж/(кг·°С)1,293
Электроотрицательность2,0
Ковалентный радиус, Å0,82
1-й ионизац. потенциал, эв8,30

Бор

Физические свойства

Химические свойства

Получение

Применение

Бор в организме

Бор (лат. Borum), В, химический элемент III группы периодической системы Менделеева, атомный номер 5, атомная масса 10,811; кристаллы серовато-черного цвета (очень чистый Бор бесцветен). Природный Бор состоит из двух стабильных изотопов: 10B (19%) и 11B (81%).

Ранее других известное соединение Бора - бура - упоминается в сочинениях алхимиков под арабским названием "бурак" и латинским Borax, откуда и произошло наименование "бор". Свободный Бор (нечистый) впервые получили французские химики Ж. Гей-Люссак и Л. Тенар в 1808 году нагреванием борного ангидрида B2O3 с металлическим калием. Общее содержание Бора в земной коре 3·10-4% по массе. В природе Бор в свободном состоянии не обнаружен. Многие соединения Бора широко распространены, особенно в небольших концентрациях. В виде боросиликатов, боратов, бороалюмосиликатов, а также как изоморфная примесь в других минералах Бор входит в состав многих изверженных и осадочных пород. Соединения Бора найдены в нефтяных водах, морской воде, соляных озерах, горячих источниках, в вулканических и сопочных грязях, во многих почвах.

Физические свойства Бора. Известно несколько кристаллических модификаций Бор Для двух из них рентгеноструктурным анализом удалось полностью определить кристаллическую структуру, которая в обоих случаях оказалась весьма сложной. Атомы Бора образуют в этих структурах трехмерный каркас подобно атомам углерода в алмазе. Этим объясняется высокая твердость Бора. Однако строение каркаса в структурах Бора гораздо сложнее, чем в алмазе. Основной структурной единицей в кристаллах Бора служат двадцатигранники (икосаэдры), в вершинах каждого из которых находятся 12 атомов Бора. Икосаэдры соединяются между собой как непосредственно, так и посредством промежуточных атомов Бора, не входящих в состав какого-либо икосаэдра. При таком строении оказывается, что атомы Бор в кристаллах имеют разные координационные числа: 4, 5, 6 и 5 + 2 (5 ближних "соседей" и 2 более далеких). Так как на внешней оболочке атома Бора находятся всего 3 электрона (электронная конфигурация 2s22p1), на каждую присутствующую в кристаллическом Боре связь приходится существенно меньше двух электронов. В соответствии с современными представлениями, в кристаллах Бор осуществляется особый тип ковалентной связи - многоцентровая связь с дефицитом электронов. В соединениях ионного типа Бор 3-валентен. Так называемый "аморфный" Бор, получаемый при восстановлении B2O3 металлическим натрием или калием, имеет плотность 1,73 г/см3. Чистый кристаллический Бор имеет плотность 2,3 г/см3, температуру плавления 2030°С, температуру кипения 3860°С; твердость Бора по минералогической шкале 9, микротвердость 34 Гн/м2 (3400 кгс/мм2). Кристаллический Бор - полупроводник. В обычных условиях он проводит электрический ток плохо. При нагревании до 800°С электрическая проводимость Бора увеличивается на несколько порядков, причем знак проводимости меняется (электронная - при низких температурах, дырочная - при высоких).

Химические свойства Бора. Химически Бор при обычных условиях довольно инертен (взаимодействует активно лишь с фтором), причем кристаллический Бор менее активен, чем аморфный. С повышением температуры активность Бора возрастает и он соединяется с кислородом, серой, галогенами. При нагревании на воздухе до 700°С Бор горит красноватым пламенем, образуя борный ангидрид B2O3 - бесцветную стекловидную массу. При нагревании выше 900 °С Бор с азотом образует нитрид бора BN, при нагревании с углем -карбид бора B4C3, с металлами - бориды. С водородом Бор заметно не реагирует; его гидриды (бороводороды) получают косвенным путем. При температуре красного каления Бор взаимодействует с водяным паром: 2B + 3Н2О = B2O3 + 3H2. В кислотах Бор при обычной температуре не растворяется, кроме концентрированной азотной кислоты, которая окисляет его до борной кислоты H3BO3. Медленно растворяется в концентрированных растворах щелочей с образованием боратов.

Во фториде BF3 и других галогенидах Бор связан с галогенами тремя ковалентными связями. Поскольку для завершения устойчивой 8-электронной оболочки атому Бора в галогениде BX3 недостает пары электронов, молекулы галогенидов, особенно BF3, присоединяют молекулы других веществ, имеющие свободные электронные пары, например аммиака.

В таких комплексных соединениях атом Бор окружен четырьмя атомами (или группами атомов), что соответствует характерному для Бора в его соединениях координационному числу 4. Важные комплексные соединения Бор - борогидриды, например Na[BH4], и фтороборная, или борофтористоводородная, кислота H [BF4], образующаяся из BF3 и HF; большинство солей этой кислоты (фтороборатов) растворимы в воде (за исключением солей К, Rb, Cs). Общая особенность самого Бора и его соединений - их сходство с кремнием и его соединениями. Так, борная кислота, подобно кремниевой, обладает слабыми кислотными свойствами и растворяется в HF с образованием газообразного BF3 (кремниевая дает SiF4). Бороводороды напоминают кремневодороды, а карбид Бора - карбид кремния, и т. д. Представляет интерес особое сходство модификаций нитрида BN с графитом или алмазом. Это связано с тем, что атомы В и N по электронной конфигурации совместно имитируют 2 атома С (у В - 3 валентных электрона, у N - 5, у двух атомов С - по 4). Эта аналогия характерна и для других соединений, содержащих одновременно Бор и азот. Так, боразан ВН3-NH3 подобен этану СН3-СН3, а боразен BH2=NH2 и простейший боразин BH≡NH подобны соответственно этилену СН2=СН2 и ацетилену СН≡СН. Если тримеризация ацетилена С2Н2 дает бензол С6Н6, то аналогичный процесс приводит от боразина BHNH к боразолу B3N3H6.

Получение Бора. Элементарный Бор из природного сырья получают в несколько стадий. Разложением боратов горячей водой или серной кислотой (в зависимости от их растворимости) получают борную кислоту, а ее обезвоживанием - борный ангидрид. Восстановление В2О3 металлическим магнием дает Бор в виде темно-бурого порошка; от примесей его очищают обработкой азотной и плавиковой кислотами. Очень чистый Бор, необходимый в производстве полупроводников, получают из его галогенидов: восстанавливают ВCl3 водородом при 1200°С или разлагают пары ВВr3 на танталовой проволоке, раскаленной до 1500°С. Чистый Бор получают также термическим разложением бороводородов.

Применение Бора. Бор в небольших количествах (доли%) вводят в сталь и некоторые сплавы для улучшения их механических свойств; уже присадка к стали 0,001-0,003% Бор повышает ее прочность (обычно в сталь вводят Бор в виде ферробора, то есть сплава железа с 10-20% Бора). Поверхностное насыщение стальных деталей бором (до глубины 0,1-0,5 мм) улучшает не только механические свойства, но и стойкость стали против коррозии. Благодаря способности изотопа 10В поглощать тепловые нейтроны, его применяют для изготовления регулирующих стержней ядерных реакторов, служащих для прекращения или замедления реакции деления. Бор в виде газообразного BF3 используют в счетчиках нейтронов. (При взаимодействии ядер 10В с нейтронами образуются заряженные α-частицы, которые легко регистрировать; число же α-частиц равно числу нейтронов, поступивших в счетчик: 105В + 10n = 73Li + 42α). Сам Бор и его соединения - нитрид BN, карбид B4C3, фосфид ВР и другие - применяют как диэлектрики и полупроводниковые материалы. Обширное применение находят борная кислота и ее соли (прежде всего бура), бориды и другие. BF3 - катализатор некоторых органических реакций.

Бор в организме. Бор относится к числу химических элементов, которые в очень малых количествах содержатся в тканях растений и животных (тысячные и десятитысячные доли% на сухую массу). Бор необходим для поддержания нормальной жизнедеятельности растений. Важнейший симптом недостатка Бора - отмирание точки роста главного стебля, а затем и пазушных почек. Одновременно черешки и листья становятся хрупкими, цветки не появляются или не образуются плоды; поэтому при недостатке Бора падает урожай семян. Известны многие болезни, связанные с недостатком Бора, например гниль сердечка сахарной свеклы, черная пятнистость столовой свеклы, побурение сердцевины брюквы и цветной капусты, засыхание верхушки льна, желтуха верхушки люцерны, бурая пятнистость абрикосов, опробковение яблок. При недостатке Бора замедляется окисление сахаров, аминирование продуктов углеводного обмена, синтез клеточных белков; однако ферменты, для которых Бор является необходимым элементом, пока неизвестны. При недостатке Бора у растений снижается содержание аденозинтрифосфорной кислоты, а также нарушается процесс окислительного фосфорилирования, вследствие чего энергия, выделяющаяся при дыхании, не может быть использована для синтеза необходимых веществ. При недостатке Бора в почве в нее вносят борные удобрения. В биогеохимических провинциях с избытком Бора в почве (например, в Северо-Западном Казахстане) возникают морфологические изменения и заболевания растений, вызываемые накоплением Бора,- гигантизм, карликовость, нарушение точек роста и других. На почвах с интенсивным борным засолением встречаются участки, лишенные растительности, "плешины", - один из поисковых признаков месторождения Бора. Значение Бора в организме животных пока не выяснено. У человека и животных (овец, верблюдов) при питании растениями с избыточным содержанием Бора (60-600 мг/кг сухого вещества и более) нарушается обмен веществ (в частности, активность протеолитических ферментов) и появляется эндемическое заболевание желудочно-кишечного тракта - борный энтерит.






 



Rambler's Top100